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ABSTRACT 

In this paper we study an epidemic model with immigration and non-monotonic incidence rate, which describes 

the psychological effect of certain serious diseases on the community when the number of infective is getting larger.         

By carrying out a global analysis of the model and studying the stability of the disease-free equilibrium and the endemic 

equilibrium, we show that either the number of infective individuals tends to zero as time evolves or the disease persists. 
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1. INTRODUCTION 

Let S(t) be the number of susceptible individuals, I(t) be the number of infective individuals, and R(t) be the 

number of removed individuals at time t, respectively. Let µ be the increase of susceptible at a constant rate. After studying 

the cholera epidemic spread in Bari in 1973, Capasso and Serio [2] introduced a saturated incidence rate g(I)S into 

epidemic models, where g(I) tends to a saturation level when I gets large,  

i.e., g(I) = 
αI1

I



k
                                                                                                                                                     (1) 

where I measures the infection force of the disease and 1/(1+I) measures the inhibition effect from the 

behavioral change of the susceptible individuals when their number increases or from the crowding effect of the infective 

individuals. This incidence rate seems more reasonable than the bilinear incidence rate 

g(I)S = kIS                                                                                                                                                                (2) 

because it includes the behavioral change and crowding effect of the infective individuals and prevents the 

unboundedness of the contact rate by choosing suitable parameters. Wang W. and Ruan S. [10] studied an epidemic model 

with a specific nonlinear incidence rate 

g(I)S = 
2

2

αI1

SI



k
                                                                                                                                                       (3) 

and presented a detailed qualitative and bifurcation analysis of the model. The general incidence rate 

g(I)S = 
q

p

αI1

SI



k
                                                                                                                                                       (4) 

Was proposed by Liu, Levin and Iwasa [9] and used by a number of authors, see, for example, Derrick and Van 

Den Driessche, Hethcote and Van Den Driessche, Alexander and Moghadas, Liu W.M. and Hethcote H.W., Xiao D. and 

Ruan S. [3,6,1,8,11] etc.  
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If the function g(I) is non-monotone, that is, g(I) is increasing when I is small and decreasing when I is large, it 

can be used to interpret the “psychological” effect: for a very large number of infective individuals the infection force may 

decrease as the number of infective individuals increases, because in the presence of large number of infective the 

population may tend to reduce the number of contacts per unit time. The recent epidemic outbreak of severe acute 

respiratory syndrome (SARS) had such psychological effects on the general public, aggressive measures and policies, such 

as border screening, mask wearing, quarantine, isolation, etc. have been proved to be very effective                           

(Gumel et al. and Wang and Ruan [7]) in reducing the infective rate at the late stage of the SARS outbreak, even when the 

number of infective individuals were getting relatively larger. To model this phenomenon, we propose an incidence rate 

g(I)S = 
2αI1

IS




                                                                                                                                                       (5) 

Where λI measures the infection force of the disease and 1/(1+I
2
) describes the psychological or inhibitory effect 

from the behavioral change of the susceptible individuals when the number of infective individuals is very large. This is 

important because the number of effective contacts between infective individuals and susceptible individuals decreases at 

high infective levels due to the quarantine of infective individuals or due to the protection measures by the susceptible 

individuals. Notice that when  = 0, the non-monotone incidence rate (5) becomes the bilinear incidence rate (2). 

 

Figure 1: Non-Monotone Incidence Function g(I) 

2. THE MODEL DESCRIPTION 

The model to be studied takes the following form 







 R
αI1

SI
dSa

dt

dS
2

      

m)I(d
αI1

IS

dt

dI
2







                                                                                 (6) 

)R(dmI
dt

dR
        

Where S(t), I(t) and R(t) denote the numbers of susceptible, infective, and recovered individuals at time                

t, respectively. a is the recruitment rate of the population, d is the natural death rate of the population, λ is the 

proportionality constant, m is the natural recovery rate of the infective individuals, β is the rate at which recovered 

individuals lose immunity and return to the susceptible class,  is the parameter measures the psychological or inhibitory 

effect. 

Because of the biological meaning of the components (S(t), I(t), R(t)), we focus on the model in the first octant of 













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R
3
. We first consider the existence of equilibria of system (6). For any values of parameters, model (6) always has a 

disease-free equilibrium E0 =(a+µ/d, 0, 0). To find the positive equilibria, set  

0   R
αI1

SI
dSa

2



 


                                                                                                                          (a) 

0  m)I(d
αI1

IS
2





                                                                                                                                         (b) 

0)R(dmI                                                                                                                                                  (c) 

From (b) & (c) R = I  
d

m









 
 and S = 



)αIm)(1(d 2
 

Substituting R and S in the equation (a), we get 

0 )(am)(d d I 
d

m 
mdI m)](d d [α 2 


















 




  

  
m)(dd4α

)d(d

 )(a
1m)(dαd4

d

m 
md

m)d(d2

d

m
md

 I
222

22

2

2




























































 

We define the basic reproduction number as follows 

R0 = 
)d(d

 )(a

m

 
                                                                                                                                                      (7) 

From equation (7), we see that 

 If R0  1, then there is no positive equilibrium; 

 If R0>1, then there is a unique positive equilibrium E
*
 = (S

*
,I

*
,R

*
), called the  

Endemic equilibrium and is given by 

S
*
 = 



 )*Im)(1(d
 

2
                                                                                                                                      (8) 

I
*
 =  

m)(d αd 2

Δ
d

m
md




















                                                                                                                       (9) 

and R
*
 = 

*I
d

m
 


                                                                                                                                                (10) 

where  = ]R  [1m)(dαd4
d

m
md 0

22

2

2 














                                                                           (11) 
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In the next section, we shall study the property of these equilibria and perform a global qualitative analysis of 

model (6). 

3. MATHEMATICAL ANALYSIS 

To study the dynamics of model (6), we first present a lemma. 

Lemma 3.1: The plane S + I + R = ) (a  /d is an invariant manifold of system (6), which is attracting in the first octant. 

Proof: Summing up the three equations in (6) and denoting N(t)=S(t)+I(t)+R(t), we have 

dt

dN
 =  a  – dN                                                                                                                                               (12) 

It is clear that N(t) = S(t)+I(t)+R(t) = ) (a  /d is a solution of equation (12) and for any N(t0)  0, the general 

solution of equation (12) is  

N(t) = 
d

e ))dN(t(a
  

d

a
)td(t

0
0




 
 

 
d

a
  N(t) lim

t





 

which implies the conclusion.  

It is clear that the limit set of system (6) is on the plane S+I+R = ) a (  /d. Thus, we focus on the reduced 

system  

R)Q(I,   )R(dmI
dt

dR

R)P(I,    I m)(dRI
d

  a

αI1

I

dt

dI
2






















                                                                                 (13) 

We have the following result regarding the nonexistence of periodic orbits in system (13), which implies the    

non-existence of periodic orbits of system (6) by Lemma. 

Theorem 3.2: System (13) does not have nontrivial periodic orbits. 

Proof: Consider the system (13) for I > 0 and R > 0. Take a Dulac function 

D(I,R) = 
I

αI1 2




 

We have 

0)R(d
I

αI1
I

m)(d 2α
1

R

(DQ)

I

(DP) 2



















 

The conclusion follows.  

In order to study the properties of the disease-free equilibrium E0 and the endemic equilibrium E
*
, we rescale (13) 

by 
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x = I
d 




, y = R

d 




, T= (d+β)t  

Then we obtain 

 

ywx
dτ

dy

uxyxK
x1

x

dT

dx
2







v

                                                                                                                       (14) 

where v =
2

2)(d



 
, K = 

)d(d

)  a (








, u = 





d

d m
, w = 

d

m
 

Note that the trivial equilibrium (0,0) of system (14) is the disease-free equilibrium E0 of model (6) and the unique 

positive equilibrium (x
*
,y

*
) of system (14) is the endemic equilibrium E

*
 of model (6) if and only if u – K < 0, where 

x
*
 = 

2uv

K)-4uv(uw)(1w)(1 2 
 and y

*
 = wx

* 

We first determine the stability and topological type of (0, 0). The Jacobian matrix of system (14) at (0, 0) is  

M0 = 












1w

0K u
 

If K – u = 0, then there exists a small neighborhood N0 of (0, 0) such that the dynamics of system (14) is 

equivalent to 

ywx
dT

dy

)y)O((x,xyx
dT

dx 32





                                                                                                                            (15) 

We know that (0, 0) is a saddle-node. Hence, we obtain the following result. 

Theorem 3.3: The disease-free equilibrium (0,0) of system (14) is 

 A stable hyperbolic node if u – K > 0, 

 A saddle-node if u – K = 0, 

 A hyperbolic saddle if u – K < 0. 

When u – K < 0, we discuss the stability and topological type of the endemic equilibrium (x
*
, y

*
). The Jacobian 

matrix of (14) at (x
*
,y

*
) is 

M1 = 

























1-w

)vx(1

x

)vx(1

12Kvx2vwx(vxx
22*

*

22*

*2*2**
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We have that 

det (M1) = 
22*

2***

)vx(1

)w)vx(12Kvxw(1x




 

The sign of det (M1) is determined by 

P1 )w)vx(12Kvxw(1 
2**   

Note that uv
2*x + (1+w) x

*
 + u – K = 0. We have 

uP1 = (2Kuv+ (1 + w)
2
) 














2

*

w)(12Kuv

K)w)(2u(1
x  

Now substituting x
*
=

2uv

w)(1 1
  

where K)4uv(uw)(1 2

1  ,into P1 and using a straightforward calculation, we’ve 

P1 = 







 ]w)(12Kuv[w)Δ(1

2u

Δ 2

12

1

v
 = 






















12

1 Δ
1

2Kuv
w1

2u

Δ w)(1

wv
. 

Since 
2

1

2

Δ
1

2Kuv
w1 












w
 = 0v4u

w)(1

Kv4u 2

2

222




, it follows that P1 > 0. Hence, det (M1) > 0            

and (x
*
,y

*
) is a node or a focus or a center. Furthermore, we have the following result on the stability of (x

*
,y

*
). 

Theorem 3.4: Suppose u–K < 0, then there is a unique endemic equilibrium (x
*
,y

*
) of model (14), which is a stable node. 

Proof: We know that the stability of (x
*
,y

*
) is determined by trace(M1). We have 

trace(M1) = 
22*

*2*3*4*2

)vx(1

1xK)vx2(12w)vx(1xv




 

The sign of trace (M1) is determined by 

P2 = 1x)vx2(12w)vx(1xv *2*3*4*2  K  

We claim that P2  0. To see this, note that uv
2*x +(1+w) x

*
+u–K= 0. Then we have  

u
3
vP2 = (B1K + B2) x

*
 + (B3K + B4), 

where B1 = uv(2+3u+2w+4uw), 

B2 = (1+w)[(1+w)
2
+u(1+w)(1+2w)–2u

3
v], 

B3 = – (1+w)
2
–u(1+w)(1+2w)+2u

3
v, 

B4 = u[(1+w)
2
+u(1+w)(1+2w)–v(1+2u)K

2
]. 
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When u – K < 0 we can see that B1K + B2 > 0: 

Let  = uv
2*x + (1+w) x

*
 + u – K.  

Similarly, we have 

(B1K + B2)
2 
 = u

3
vpP2 + P3, where p is a polynomial of x

*
 and 

S3 = u
3
v(1+K

2
v+2w+w

2
) 

[(K+2Ku–2u
2
)

2
v+(1+K–u+w)(1+u+w+2uw)]. 

Assume that P2 = 0. Since  = 0, it follows that P3 = 0. However, when u – K < 0; we have P3> 0. Therefore,            

P2  0 for any positive value of the parameters v, w and K, that is, trace (M1)  0. Thus, u – K < 0 implies that (x
*
,y

*
) does 

not change stability.  

Take u = 1, K = 2, v = 1, w = 1. Then x
*
 = –1 + 2 , y

*
 = –1 + 2 ,  

Trace (M1) = –1.4645 < 0. 

By the continuity of trace (M1) on the parameters, we know that trace (M1) < 0 for  

u – K < 0. This completes the proof.  

Theorem 3.5: Let R0 be defined by (8). 

 If R0 < 1, then model (6) has a unique disease-free equilibrium  

 E0 = ( )  a (  /d, 0, 0), which is a global attractor in the first octant. 

 If R0 = 1, then model (6) has a unique disease-free equilibrium  

 E0 = ( )  a (  /d, 0, 0), which attracts all orbits in the interior of the first octant. 

 If R0 > 1, then model (6) has two equilibria, a disease-free equilibrium  

E0 = ( )  a (  /d,0,0), and an endemic equilibrium E
*
 = (S

*
,I

*
,R

*
). The endemic  equilibrium E

*
 is a global 

attractor in the interior of the first octant. 

4. NUMERICAL SIMULATION 

Let  = 4 (constant), a = 1.0, d = 0.2, λ= 0.2, β = 0.3, m = 0.1,  varies from 0.1 to 1.5 

Table 1 

 

µ a+µ R0 I
* 

S
*
 R

*
 

0.1 1.1 3.1421 0.6449 0.1935 4.6615 

0.2 1.2 3.4285 0.6918 0.2075 5.1006 

0.3 1.3 3.7142 0.7361 0.2208 5.5430 

0.4 1.4 4.0000 0.7781 0.2334 5.9884 

0.5 1.5 4.2857 0.8182 0.2454 6.4363 

0.6 1.6 4.5714 0.8566 0.2569 6.8864 

0.7 1.7 4.8570 0.8935 0.2680 7.3384 

0.8 1.8 5.1428 0.9290 0.2787 7.7922 

0.9 1.9 5.2485 0.9634 0.2890 8.2475 
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Table 1: Contd., 

1.0 2.0 5.7142 0.9967 0.2990 8.7042 

1.1 2.1 6.0000 1.0290 0.3087 9.1622 

1.2 2.2 6.2857 1.0604 0.3181 9.6214 

1.3 2.3 6.5714 1.0909 0.3273 10.0817 

1.4 2.4 6.8751 1.1207 0.3362 10.5430 

1.5 2.5 7.1428 1.1498 0.3449 11.0051 

 

From this table we infer that, when  kept constant ( = 4) and if µ varies from 

0.1 to 1.5, we see that the endemic equilibrium E
*
 = (S

*
,I

*
,R

*
), monotonically increases for increasing values of . 

Annexure 2 

Let µ =0.5 (constant), α varies from 1 to 15, a = 1.0, d = 0.2,  

λ = 0.2, β = 0.3, m = 0.15, µ = 0.5, a + µ = 1.5 and R0 = 4.2857 

Table 2 

 I
* 

R
*
 S

*
 

1 1.4788 0.4436 5.5775 

2 1.1094 0.3328 6.0577 

3 0.9300 0.2790 6.2910 

4 0.8182 0.2454 6.4363 

5 0.7397 0.2219 6.5384 

6 0.6806 0.2041 6.6152 

7 0.6341 0.1902 6.6756 

8 0.5961 0.1788 6.7250 

9 0.5643 0.1693 6.7664 

10 0.5372 0.1611 6.8016 

11 0.5138 0.1541 6.8321 

12 0.4932 0.1479 6.8588 

13 0.4749 0.1424 6.8826 

14 0.4586 0.1375 6.9038 

15 0.4438 0.1331 6.9231 

 

From this table we infer that, when  is raised ( = 1,2,3,…,15) and if µ is constant (µ = 0.5), the endemic 

equilibrium I
*
 and R

* 
monotonically decreases for increasing values of , while S

* 
monotonically increases for increasing 

values of . 

5. GRAPHICAL REPRESENTATION 

 

Figure 2 
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When a+µ = 1.0, d = 0.2, λ = 0.2,  = 4.0, β = 0.3, m = 0.15, R0 = 6/7 < 1, S(t) approaches to its steady state value 

while I(t) and R(t) approach zero as time goes to infinity, the disease dies out. Here we proposed a non-monotone 

incidence rate of the form λIS = (1+I
2
), which is increasing when I is small and decreasing when I is large. It can be used 

to interpret the “psychological” effect: the number of effective contacts between infective individuals and susceptible 

individual decreases at high infective levels due to the quarantine of infective individuals or the protection measures by the 

susceptible individuals. The recent epidemic outbreak of severe acute respiratory syndrome (SARS) had such 

psychological effects on the general public. 

 

Figure 3 

When a+µ = 1.0, d = 0.2, λ = 0.2,  = 4.0, β = 0.3, m = 0.15, R0 = 20/7 > 1, all three components, S(t), I(t) and 

R(t), approach to their steady state values as time goes to infinity, the disease becomes endemic. We have carried out a 

global qualitative analysis of an SIR model with this non-monotone and nonlinear incidence rate and studied the existence 

and stability of the disease-free and endemic equilibria. It indicates that when R0 < 1; the disease-free equilibrium is 

globally attractive (see Figure 2). When R0 > 1; the endemic equilibrium exists and is globally stable (see Figure 3).  

CONCLUDING REMARKS 

SIR Epidemic model with non-monotone incidence rate describes the psychological effect of certain serious 

diseases on the community when the number of infective is getting larger. By carrying out a global analysis of the model 

and studying the stability of the disease-free equilibrium and the endemic equilibrium, we show that either the number of 

infective individuals tends to zero as time evolves or the disease persists.  

From this model, the basic reproductive number R0 has been introduced though the basic reproductive number   

R0 does not depend on  explicitly, numerical simulations indicate that when the disease is endemic, I
*
 of the infective 

decreases as  increases. From (10) we see that I
* 
approaches zero as  tends to infinity. 
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